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摘要：许多虚拟现实程序需要模拟物体之间的各种交互。其中一个就是保证物体不被穿

透。我们提出一个新颖的算法检测虚拟相机和地形的碰撞。碰撞被检测到后，我们给出一

个良好的碰撞响应。这个算法不需要为物体提前计算包围盒，所以相对于使用球树（使用

球作为包围盒）的算法，节省了内存。在一个虚拟全球地形环境程序中测试，这个算法能

达到实时速度。经过试验比较这个算法比使用球树的碰撞检测算法大约快几十倍。 
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Abstract 
 

In many virtual reality applications it is necessary to 
simulate the interaction among objects. One of the 
basic requirements is to ensure a non-penetration of 
bodies. We show a novel algorithm for detecting 
collisions between camera and terrain. After collisions 
are detected we propose a fancy collision response. Our 
collision detection algorithm doesn’t need 
precomputation and reduces memory requirement 
comparing to the collision detection algorithm using 
sphere trees.  In a virtual global terrain environment 
application, our collision detection and response 
algorithm easily runs at real-time rate. Our collision 
detection algorithm runs faster about dozens of times 
than the collision detection algorithm using sphere 
trees.  
 
Keywords: Collision Detection, Collision Response, 
Virtual Environment, Terrain. 
 
 
1. Introduction 
 

Although the non-penetration of rigid bodies is quite 
common in the real world, in virtual environments the 
contrary is true [1]. In a virtual global terrain 
environment we not only pay attention to collisions 
between objects but also focus on collisions between 
camera and terrain. In this paper we concentrate on 

collisions between camera and terrain.  It is necessary to 
conduct collision detection and response for avoiding 
penetration between camera and terrain in order to 
make our simulation more believable and realistic. 

Collision detection and response problems have been 
investigated for more than three decades. Many object-
space collision detection algorithms based on volume 
hierarchies and spatial partitioning work well on rigid 
objects [2, 3, 4, 5].  Recently, GPU-based algorithms 
are increasingly used to perform collision computations. 
These algorithms exploit the capabilities of GPUs 
which involve rasterization and visibility query to check 
for overlaps without precomputation [6, 7, 8, 9]. These 
algorithms work well on rigid or deformable objects 
and can check collisions or self-collisions. Some 
researchers even use hardware-accelerated ray-
intersection testing for high-performance collision 
detection [10]. On the other hand, most Collision 
response algorithms are based on physical laws [11, 12, 
13, 14, 15, 16]. These algorithms explore conservation 
laws or constraints or impulse dynamics to achieve 
reasonable collision responses. For visual global terrain 
environments object-space collision detection 
algorithms require costly precomputation and GPU-
based collision detection algorithms don’t work well 
under all circumstances as some computers have limited 
GPU resources and couldn’t afford to expensive GPU 
computations. 

We propose a novel collision detection algorithm, 
Quick Oriented Terrain Collision Detection (QOTCD), 
to detect collisions between camera and terrain. After 
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detecting the collision, we present a fancy collision 
response to make our simulation more realistic. Our 
collision detection and response algorithm is 
implemented on a 3.0 GHz PC with NVIDIA GeForce 
FX 8400 GS card and is applied to a virtual global 
terrain environment application. It is easily able to 
perform collision detection and response at real-time 
rate. 

The rest of the paper is organized as follows. We 
give an overview of previous work on collision 
detection and response in Section 2. We present our 
collision detection and response algorithm in Section 3. 
In Section 4, we analyze our collision detection 
algorithm comparing to the algorithm using sphere trees. 

 
2. Previous work 
 

In this section, we give a brief survey of prior work 
on collision detection and response. 

 
2.1. Collision detection 
 

Many object-space algorithms use spatial structures 
to accelerate interference computations [2, 3, 4, 5]. 
Typically for a simulated environment consisting of 
many moving objects, these algorithms use spatial 
subdivision algorithms or checking whether the 
bounding boxes of the objects overlap to reduce the 
number of pairwise collision checks. Furthermore, 
based on spatial partitioning or bounding volume 
hierarchies algorithms are used to accelerate accurate 
checking collisions. 

Graphics hardware has been increasingly employed 
to accelerate collision detection. GPU-based collision 
detection algorithms involve image-space collision 
detection algorithms and other collision detection 
algorithms. Image-space algorithms are based on depth 
and stencil buffers and are limited to closed objects 
which include rigid objects and deformable objects. 
However, image-based algorithms require depth-buffer 
readbacks, which can be expensive on commodity 
graphics hardware [6, 7]. The GPU-based algorithms 
using visibility query are not restricted to closed objects 
and check for self-collisions [8, 9]. Some algorithms try 
to use hardware to improve the performance of collision 
detection [10]. 

 
2.2. Collision response 

 
Based on conservation laws collision response 

algorithms consider physical equations and energy 
conversation [11, 12, 13]. These algorithms are based 
on conservative laws of momentum, conservative law 
of kinetic energy, the relative velocity at post-collision 
position, elasticity, friction and mass-spring. An 
experiment in which the sensitivity of subjective 
presence to varying collision response parameters in 
examined is described [11]. Based on constrains 

collision response algorithms are proposed for animated 
cloth simulation [14]. Some algorithms use impulse 
dynamics for collision response [15, 16]. A simple 
algorithm is well suited to modeling physical systems 
with large number of collisions, or with contact modes 
that change frequently and is faster than constraint-
based methods [15]. However, it cannot be used for 
deformable object collisions. A few collision response 
algorithms for deformable objects in virtual surgery are 
presented [17, 18]. A hybrid approach in which the 
finite element model and a particle model are used to 
simulated flexible dynamics of the duct and catheter 
respectively [19].  Another response algorithm which 
adds and subtracts virtual particles as need is proposed 
[20].  

 
2.3. Collision about terrain 

 
An algorithm using sphere trees to check collisions 

between camera and terrain is presented [21]. It builds 
spheres for camera’s motion and each terrain tile in a 
virtual terrain environment during preprocessing. A 
rapid algorithm, Quick Oriented Terrain Algorithm 
(QOTA), is proposed to support terrain following [22]. 
This algorithm gives our collision detection algorithm, 
QOTCD, an inspiration.  A technique for providing 
automatic animation and collision avoidance of 
arbitrary objects is used to a cloud movement over 
terrain application [23].  

 
3. Quick Oriented Terrain Collision 
Detection and Response 
 

In this section, we present our novel collision 
detection and response algorithm. Our approach for 
collision detection and response aims at avoiding 
collisions before they occur. 
 
3.1. Global terrain visualization 
 

  In order to balance the overload between visual 
fidelity and real-time rendering the global terrain, 
visualization usually relies on multi-resolution 
hierarchy technology. This technology divides the 
whole global terrain into different levels and tiles in 
terms of latitude and longitude. The concise scheme of 
global terrain visualization is shown in Fig 1. The 
whole terrain data is also divided and distributed in 
small blocks stored in files during preprocessing. Each 
tile whose structure is Regular Square Grid (RSG) or 
Triangulated Irregular Network (TIN) constructs 
meshes using the vertices of its corresponding terrain 
block stored in a file. Global terrain meshes are 
constructed by linking meshes of all tiles. When the 
camera moves, terrain tiles outside the frustum are 
unloaded from memory and replaced with new ones. 
When the camera gets close to the globe, precise terrain 
tiles replace coarse terrain tiles. In contrary, when the 
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camera is far away from the globe, coarse terrain tiles 
are rendered instead of precise terrain tiles. It is 
necessary to make sure that there are always geometries 
in the camera’s frustum.  

 
Fig 1. Global terrain visualization 

 
3.2. Quick Oriented Terrain Collision Detection  
 

While a terrain model specifies a surface in 3D space, 
it is essentially 2D in nature and can be viewed as 2D 
map marked with heights. More specifically, it is 
assumed that like other 3D models, a terrain model is 
composed of polygons [22]. While a terrain model may 
contain tens of thousands of polygons, a ray from the 
camera to the globe center, Oriented Ray, intersects a 
single polygon. Oriented Ray intersects the surface of 
globe at a point called Intersecting Point which is the 
closest point to the camera among points on the global 
surface. The overview of QOTCD is shown in fig 2. 
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Fig 2. The overview of QOTCD: C denotes the current 

position of the camera; C’ denotes the new position of 
the camera; O denotes the globe center; P1 denotes 
Intersecting Point and P2 denotes the point where 
Oriented Ray and the terrain intersect; TP0, TP1, TP2 
denote three terrain tiles; H denotes the height of 
Intersecting Point. D denotes the distance from the 
camera to Intersecting Point. If D > H, there is no 
collision; if D <= H, there is a collision between the 
camera and the terrain. 

When the camera reach a new position, it is required 
to check whether the camera penetrate the terrain. 
Determining whether a collision occurs is divided into 
three steps. First of all, we translate the new position 
from the standard three-dimensional space (which 

OpenGL/D3D operates in) into the sphere space which 
the global terrain data is in. We calculate the new value 
of the new position in the sphere space using formulary 
1: 
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Where (x, y, z) is in the standard three-dimensional 
space and (L, B, R) is in the sphere space. L, B, R 
denote latitude, longitude, radius. It is obvious that the 
longitude and latitude of Intersecting Point are L and B 
respectively. In addition the distance between the 
camera and Intersecting Point is calculated by 
subtracting the globe radius from R. 

Next the terrain height of Intersecting Point is 
computed according to its longitude and latitude. We 
determine which terrain tiles contain Intersection Point. 
Every tile has a range composed of minimal (maximal) 
longitude, minimal (maximal) latitude. We quickly 
query the corresponding tiles by comparing the 
longitude and latitude of Intersecting Point with the 
range of terrain tiles in purely two dimensions. 
Additionally because Intersecting Point is the center of 
the camera’s view, the corresponding terrain tiles must 
be in rendering terrain tiles array. We accelerate finding 
the corresponding terrain tiles through reducing the 
range from all terrain tiles to rendering terrain tiles. We 
select the max level terrain tile among terrain tiles 
which contain Intersecting Point as Intersecting Terrain 
Tile. Although the structure of Intersecting Terrain Tile 
may be TIN or RSG, the terrain block with respect to 
Intersecting Terrain Tile usually stores vertices in a 
good order. If Intersecting Point is one of vertices 
accidently (we give a enough small error) of the terrain 
block, we directly get the terrain height of this vertex; if 
Intersecting Point is in a quadrangle composed of four 
vertices we get maximal terrain height of four vertices; 
if Intersecting Point is in a column or a row, we get the 
maximal terrain height of two nearby vertices in the 
same column or row. The distribution of Intersecting 
Point in a 17 17×  terrain block is shown in fig 3. 
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Fig 3. The distribution of Intersecting Point in a 17 x 17 

terrain block:  means Intersecting Point overlaps 
with a vertex completely;  means Intersecting 
Point is in a row or column;  means Intersecting 
Point is in a quadrangle. 

Finally the distance between the camera and 
Intersecting Point and the terrain height of Intersecting 
Point are known, we compare two values to determine 
whether a collision occurs. If the distance is greater than 
the terrain height, a collision doesn’t occur. In contrary, 
if the distance is less than the terrain height, a collision 
occurs. 
 
3.3. Camera-terrain collision response 
 

 After a collision has been detected, a fancy collision 
response is required to make our simulation more 
realistic. Collision response usually considers physical 
laws including conservative laws of momentum, 
conservative law of kinetic energy, elasticity and 
friction and so on. In global terrain environments, the 
terrain is a static object without velocity as well as 
acceleration while the camera may or may not have 
velocity or acceleration. Since only the camera is 
motive, it is not necessary to consider conservative laws 
for collision response. As a result the terrain and the 
camera are rigid bodies, it is not necessary to take 
account of elasticity for collision response. As our 
response aims at avoiding collisions, it is not 
meaningful to consider friction between the camera and 
the terrain for collision response. According to the 
above analysis, we have to deal with two following 
situations respectively: 
1) Camera is static. 
2) Camera is motive. 
 
3.3.1. Camera is static. When the camera has no 
velocity and acceleration, our collision response is to 
simply stop and not allow the move when a collision is 
detected.  
 
3.3.2. Camera is motive. The movement of the camera 
can be composed to a linear velocity and an angular 

velocity relative to the globe center.  We discuss two 
kinds of movement separately. If the camera has a 
linear velocity, the method presented by [24], sliding 
along the terrain, is used. It is shown in Fig 4.  

 
Fig 4. Camera sliding along the terrain 

For the camera has an angular velocity, we only 
heighten the camera without changing the angular 
velocity when a collision is detected as shown in Fig 5. 
Since Acceleration is similar to velocity, we treat 
acceleration in the same way with velocity. 

 
Fig 5. Heightening the camera without changing angular  

velocity: �  denotes the camera’s angular velocity; C1 
denotes the current position of the camera; C2’ 
denotes the position of the camera without collision 
response; C2 denotes the position of the camera with 
collision response avoiding penetrating the terrain. 

4. Implement and performance 
 

We have implemented our collision detection and 
response algorithm using OpenGL on a PC with a 3.0 
GHz Intel Pentium CPU, an NVIDIA GeForce FX 8400 
GS GPU, and 2 GB of main memory. The PC is 
running on the Windows Server 2003 operating system. 
We develop a virtual global terrain environment 
application with GTOP30. GTOP30 is a global digital 
elevation mode (DEM) with a horizontal spacing of 30 
arc seconds (approximately 1 kilometer) and can be 
downloaded from the website (http://www1.gsi.go.jp/ 
Geowww/globalmap-gsi/gtopo30/gtopo30.htm). We 
add some images to cover the terrain in order to make 
the terrain more true to nature. Fig. 6 shows several 
snapshots of our application. 
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(a)  

 
(b) 

 
(c) 

 
(d) 

Fig 6. Shots from our virtual global terrain environment 
application: Fig (a) and Fig (b) are two snapshots of 
our application. In Fig (c) there is no collision 
detection and response, the camera penetrates the 
terrain, the terrain seems to be cracked; In Fig (d) 
there is collision detection and response, the camera 
couldn’t penetrate the terrain, the terrain is more 
realistic. 

In order to compare to other collision detection 
algorithms, we implement the algorithms using sphere 
trees used by Susana [21] in our application. However, 
there is a little change. We neglect collisions during 
each frame, so we build a sphere for the camera instead 
of the motion of the camera. The total cost function for 
interference detection can be formulated as the 
following equation [23]: 

T Nv Cv Np Cp= × + ×                          (2)
   where 
T : total function for interference detection 
Nv : number of bounding volume pair overlap tests 
Cv : cost of testing a pair of bounding volumes for 
overlap 
Np : is the number primitive pairs tested for 
interference 
Cp :  cost of testing a pair of primitives for interference

In our application, suppose there are n  terrain tiles 
and each terrain tile has m m×  vertices. It is obvious 
that the time complexity of the algorithm using sphere 
trees is 2( , )O n m . Table 1 summarizes the time 
complexity of QOTCD is ( )O n . As the comparison 
operation is very fast, the time complexity of 
QOTCD ( )O n is nearly (1)O . An experiment (we set 
m =17 and the radius of the sphere covering the camera 
is 50 meters) proves our prediction as shown in Fig 7.: 
the collision time of the algorithm using sphere trees 
increases with the number of terrain tiles in a nearly 
linear relationship, the collision time of QOTCD is 
nearly constant with the increase of the number of 
terrain tiles. The performance of QOTCD is about 
dozens of times faster than the algorithm using sphere 
trees. That the maximal collision time of QOTCD is 
less than 1 millisecond contributes to run our 
application at real-time rate.  

Our algorithm has several limitations. Firstly our 
algorithm directly gets the maximal terrain height of 
nearby vertices at cost of certain accuracy. Secondly 
our algorithm does not return any overlap information. 
Thirdly our algorithm is only applicable to virtual 
global terrain environments up to now. 

Table 1. Number of operations per calculation for 
QOTCD 

Step 1: Translating the 
camera position from the 
standard 3D space into the 
sphere space and computing 
the distance from the camera 
to Intersecting Point 

3 squares, 1 square root, 2 
divisions, 1 arc sine, 1 arc 
tangent, 1 subtraction. 

Step 2-1: finding Intersecting 
Terrain Tile 

4 comparisons 

Step 2-2: Reading the terrain 
height of Terrain Point from 
Intersecting Terrain Tile 

2 divisions,  
0～4 comparisons 

Step 3: Comparing the 
distance with the terrain 
height 

1 comparison 

Total operations 4*n+5～4*n+9 comparisons, 
3 squares, 4 divisions, 1 
square root, 1 arc sine, 1 arc 
tangent, 1 subtraction 
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5. Conclusions and future work 
 

We have proposed an efficient collision detection 
and response algorithm for virtual global terrain 
environments. Our collision detection algorithm, Quick 
Oriented Terrain Collision Detection, comparing to the 
algorithm using sphere trees indicates up to an order of 
magnitude improvement in detecting efficiency for our 
application. Our collision detection algorithm neither 
requires the precomputation of bounding volume 
hierarchies nor the extra memory to save bounding 
volume hierarchies. Additionally we give a fancy 
collision response considering two situations. Our 
collision detection and response is readily to make our 
application run at real-time rate. 

There are many avenues for future research. We 
would like to refine our algorithm for greater efficiency 
and more accuracy. We would like to do research on 
collisions between objects besides collisions between 
camera and terrain in our application. With the 
development of GPUs, we would like to explore the 
new programmability features of GPUs to further 
improve the performance of collision detection and 
response algorithms. 
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Fig 7. Performance comparison between QOTCD and the algorithm using sphere trees 
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