
虚拟全球地形环境中实时碰撞检测和响应
罗飞雄 黄跃峰 钟耳顺

摘要：许多虚拟现实程序需要模拟物体之间的各种交互。其中一个就是保证物体不被穿

透。我们提出一个新颖的算法检测虚拟相机和地形的碰撞。碰撞被检测到后，我们给出一

个良好的碰撞响应。这个算法不需要为物体提前计算包围盒，所以相对于使用球树（使用

球作为包围盒）的算法，节省了内存。在一个虚拟全球地形环境程序中测试，这个算法能

达到实时速度。经过试验比较这个算法比使用球树的碰撞检测算法大约快几十倍。

关键字：碰撞检测，碰撞响应，虚拟环境，地形

Real-time Collision Detection and Response in Virtual Global Terrain

Environments

Feixiong Luo, Ershun Zhong, Yuefeng Huang, Hui Guo, Junlai Cheng
1The State Key Lab of Resources and Environmental Information System, Institute of Geographic

Sciences and Natural Resources Research, CAS, China
2Graduate University of Chinese Academy of Sciences, China

luofx@supermap.com;zhonges@supermap.com;huangyuefeng@supermap.com;
guohui@supermap.com;chengjunlai@supermap.com

Abstract

In many virtual reality applications it is necessary to
simulate the interaction among objects. One of the
basic requirements is to ensure a non-penetration of
bodies. We show a novel algorithm for detecting
collisions between camera and terrain. After collisions
are detected we propose a fancy collision response. Our
collision detection algorithm doesn’t need
precomputation and reduces memory requirement
comparing to the collision detection algorithm using
sphere trees. In a virtual global terrain environment
application, our collision detection and response
algorithm easily runs at real-time rate. Our collision
detection algorithm runs faster about dozens of times
than the collision detection algorithm using sphere
trees.

Keywords: Collision Detection, Collision Response,
Virtual Environment, Terrain.

1. Introduction

Although the non-penetration of rigid bodies is quite
common in the real world, in virtual environments the
contrary is true [1]. In a virtual global terrain
environment we not only pay attention to collisions
between objects but also focus on collisions between
camera and terrain. In this paper we concentrate on

collisions between camera and terrain. It is necessary to
conduct collision detection and response for avoiding
penetration between camera and terrain in order to
make our simulation more believable and realistic.

Collision detection and response problems have been
investigated for more than three decades. Many object-
space collision detection algorithms based on volume
hierarchies and spatial partitioning work well on rigid
objects [2, 3, 4, 5]. Recently, GPU-based algorithms
are increasingly used to perform collision computations.
These algorithms exploit the capabilities of GPUs
which involve rasterization and visibility query to check
for overlaps without precomputation [6, 7, 8, 9]. These
algorithms work well on rigid or deformable objects
and can check collisions or self-collisions. Some
researchers even use hardware-accelerated ray-
intersection testing for high-performance collision
detection [10]. On the other hand, most Collision
response algorithms are based on physical laws [11, 12,
13, 14, 15, 16]. These algorithms explore conservation
laws or constraints or impulse dynamics to achieve
reasonable collision responses. For visual global terrain
environments object-space collision detection
algorithms require costly precomputation and GPU-
based collision detection algorithms don’t work well
under all circumstances as some computers have limited
GPU resources and couldn’t afford to expensive GPU
computations.

We propose a novel collision detection algorithm,
Quick Oriented Terrain Collision Detection (QOTCD),
to detect collisions between camera and terrain. After

557

detecting the collision, we present a fancy collision
response to make our simulation more realistic. Our
collision detection and response algorithm is
implemented on a 3.0 GHz PC with NVIDIA GeForce
FX 8400 GS card and is applied to a virtual global
terrain environment application. It is easily able to
perform collision detection and response at real-time
rate.

The rest of the paper is organized as follows. We
give an overview of previous work on collision
detection and response in Section 2. We present our
collision detection and response algorithm in Section 3.
In Section 4, we analyze our collision detection
algorithm comparing to the algorithm using sphere trees.

2. Previous work

In this section, we give a brief survey of prior work
on collision detection and response.

2.1. Collision detection

Many object-space algorithms use spatial structures
to accelerate interference computations [2, 3, 4, 5].
Typically for a simulated environment consisting of
many moving objects, these algorithms use spatial
subdivision algorithms or checking whether the
bounding boxes of the objects overlap to reduce the
number of pairwise collision checks. Furthermore,
based on spatial partitioning or bounding volume
hierarchies algorithms are used to accelerate accurate
checking collisions.

Graphics hardware has been increasingly employed
to accelerate collision detection. GPU-based collision
detection algorithms involve image-space collision
detection algorithms and other collision detection
algorithms. Image-space algorithms are based on depth
and stencil buffers and are limited to closed objects
which include rigid objects and deformable objects.
However, image-based algorithms require depth-buffer
readbacks, which can be expensive on commodity
graphics hardware [6, 7]. The GPU-based algorithms
using visibility query are not restricted to closed objects
and check for self-collisions [8, 9]. Some algorithms try
to use hardware to improve the performance of collision
detection [10].

2.2. Collision response

Based on conservation laws collision response

algorithms consider physical equations and energy
conversation [11, 12, 13]. These algorithms are based
on conservative laws of momentum, conservative law
of kinetic energy, the relative velocity at post-collision
position, elasticity, friction and mass-spring. An
experiment in which the sensitivity of subjective
presence to varying collision response parameters in
examined is described [11]. Based on constrains

collision response algorithms are proposed for animated
cloth simulation [14]. Some algorithms use impulse
dynamics for collision response [15, 16]. A simple
algorithm is well suited to modeling physical systems
with large number of collisions, or with contact modes
that change frequently and is faster than constraint-
based methods [15]. However, it cannot be used for
deformable object collisions. A few collision response
algorithms for deformable objects in virtual surgery are
presented [17, 18]. A hybrid approach in which the
finite element model and a particle model are used to
simulated flexible dynamics of the duct and catheter
respectively [19]. Another response algorithm which
adds and subtracts virtual particles as need is proposed
[20].

2.3. Collision about terrain

An algorithm using sphere trees to check collisions

between camera and terrain is presented [21]. It builds
spheres for camera’s motion and each terrain tile in a
virtual terrain environment during preprocessing. A
rapid algorithm, Quick Oriented Terrain Algorithm
(QOTA), is proposed to support terrain following [22].
This algorithm gives our collision detection algorithm,
QOTCD, an inspiration. A technique for providing
automatic animation and collision avoidance of
arbitrary objects is used to a cloud movement over
terrain application [23].

3. Quick Oriented Terrain Collision
Detection and Response

In this section, we present our novel collision
detection and response algorithm. Our approach for
collision detection and response aims at avoiding
collisions before they occur.

3.1. Global terrain visualization

 In order to balance the overload between visual
fidelity and real-time rendering the global terrain,
visualization usually relies on multi-resolution
hierarchy technology. This technology divides the
whole global terrain into different levels and tiles in
terms of latitude and longitude. The concise scheme of
global terrain visualization is shown in Fig 1. The
whole terrain data is also divided and distributed in
small blocks stored in files during preprocessing. Each
tile whose structure is Regular Square Grid (RSG) or
Triangulated Irregular Network (TIN) constructs
meshes using the vertices of its corresponding terrain
block stored in a file. Global terrain meshes are
constructed by linking meshes of all tiles. When the
camera moves, terrain tiles outside the frustum are
unloaded from memory and replaced with new ones.
When the camera gets close to the globe, precise terrain
tiles replace coarse terrain tiles. In contrary, when the

558

camera is far away from the globe, coarse terrain tiles
are rendered instead of precise terrain tiles. It is
necessary to make sure that there are always geometries
in the camera’s frustum.

Fig 1. Global terrain visualization

3.2. Quick Oriented Terrain Collision Detection

While a terrain model specifies a surface in 3D space,
it is essentially 2D in nature and can be viewed as 2D
map marked with heights. More specifically, it is
assumed that like other 3D models, a terrain model is
composed of polygons [22]. While a terrain model may
contain tens of thousands of polygons, a ray from the
camera to the globe center, Oriented Ray, intersects a
single polygon. Oriented Ray intersects the surface of
globe at a point called Intersecting Point which is the
closest point to the camera among points on the global
surface. The overview of QOTCD is shown in fig 2.

O

C’

P1

P2

TP0

TP2

TP1

C

Fig 2. The overview of QOTCD: C denotes the current

position of the camera; C’ denotes the new position of
the camera; O denotes the globe center; P1 denotes
Intersecting Point and P2 denotes the point where
Oriented Ray and the terrain intersect; TP0, TP1, TP2
denote three terrain tiles; H denotes the height of
Intersecting Point. D denotes the distance from the
camera to Intersecting Point. If D > H, there is no
collision; if D <= H, there is a collision between the
camera and the terrain.

When the camera reach a new position, it is required
to check whether the camera penetrate the terrain.
Determining whether a collision occurs is divided into
three steps. First of all, we translate the new position
from the standard three-dimensional space (which

OpenGL/D3D operates in) into the sphere space which
the global terrain data is in. We calculate the new value
of the new position in the sphere space using formulary
1:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

++=

++
=

=

222

222
)sin(

)tan(

zyxR

zyx
yaB

z
xaL

(1)

Where (x, y, z) is in the standard three-dimensional
space and (L, B, R) is in the sphere space. L, B, R
denote latitude, longitude, radius. It is obvious that the
longitude and latitude of Intersecting Point are L and B
respectively. In addition the distance between the
camera and Intersecting Point is calculated by
subtracting the globe radius from R.

Next the terrain height of Intersecting Point is
computed according to its longitude and latitude. We
determine which terrain tiles contain Intersection Point.
Every tile has a range composed of minimal (maximal)
longitude, minimal (maximal) latitude. We quickly
query the corresponding tiles by comparing the
longitude and latitude of Intersecting Point with the
range of terrain tiles in purely two dimensions.
Additionally because Intersecting Point is the center of
the camera’s view, the corresponding terrain tiles must
be in rendering terrain tiles array. We accelerate finding
the corresponding terrain tiles through reducing the
range from all terrain tiles to rendering terrain tiles. We
select the max level terrain tile among terrain tiles
which contain Intersecting Point as Intersecting Terrain
Tile. Although the structure of Intersecting Terrain Tile
may be TIN or RSG, the terrain block with respect to
Intersecting Terrain Tile usually stores vertices in a
good order. If Intersecting Point is one of vertices
accidently (we give a enough small error) of the terrain
block, we directly get the terrain height of this vertex; if
Intersecting Point is in a quadrangle composed of four
vertices we get maximal terrain height of four vertices;
if Intersecting Point is in a column or a row, we get the
maximal terrain height of two nearby vertices in the
same column or row. The distribution of Intersecting
Point in a 17 17× terrain block is shown in fig 3.

559

Fig 3. The distribution of Intersecting Point in a 17 x 17

terrain block: means Intersecting Point overlaps
with a vertex completely; means Intersecting
Point is in a row or column; means Intersecting
Point is in a quadrangle.

Finally the distance between the camera and
Intersecting Point and the terrain height of Intersecting
Point are known, we compare two values to determine
whether a collision occurs. If the distance is greater than
the terrain height, a collision doesn’t occur. In contrary,
if the distance is less than the terrain height, a collision
occurs.

3.3. Camera-terrain collision response

 After a collision has been detected, a fancy collision
response is required to make our simulation more
realistic. Collision response usually considers physical
laws including conservative laws of momentum,
conservative law of kinetic energy, elasticity and
friction and so on. In global terrain environments, the
terrain is a static object without velocity as well as
acceleration while the camera may or may not have
velocity or acceleration. Since only the camera is
motive, it is not necessary to consider conservative laws
for collision response. As a result the terrain and the
camera are rigid bodies, it is not necessary to take
account of elasticity for collision response. As our
response aims at avoiding collisions, it is not
meaningful to consider friction between the camera and
the terrain for collision response. According to the
above analysis, we have to deal with two following
situations respectively:
1) Camera is static.
2) Camera is motive.

3.3.1. Camera is static. When the camera has no
velocity and acceleration, our collision response is to
simply stop and not allow the move when a collision is
detected.

3.3.2. Camera is motive. The movement of the camera
can be composed to a linear velocity and an angular

velocity relative to the globe center. We discuss two
kinds of movement separately. If the camera has a
linear velocity, the method presented by [24], sliding
along the terrain, is used. It is shown in Fig 4.

Fig 4. Camera sliding along the terrain

For the camera has an angular velocity, we only
heighten the camera without changing the angular
velocity when a collision is detected as shown in Fig 5.
Since Acceleration is similar to velocity, we treat
acceleration in the same way with velocity.

Fig 5. Heightening the camera without changing angular

velocity: � denotes the camera’s angular velocity; C1
denotes the current position of the camera; C2’
denotes the position of the camera without collision
response; C2 denotes the position of the camera with
collision response avoiding penetrating the terrain.

4. Implement and performance

We have implemented our collision detection and
response algorithm using OpenGL on a PC with a 3.0
GHz Intel Pentium CPU, an NVIDIA GeForce FX 8400
GS GPU, and 2 GB of main memory. The PC is
running on the Windows Server 2003 operating system.
We develop a virtual global terrain environment
application with GTOP30. GTOP30 is a global digital
elevation mode (DEM) with a horizontal spacing of 30
arc seconds (approximately 1 kilometer) and can be
downloaded from the website (http://www1.gsi.go.jp/
Geowww/globalmap-gsi/gtopo30/gtopo30.htm). We
add some images to cover the terrain in order to make
the terrain more true to nature. Fig. 6 shows several
snapshots of our application.

560

(a)

(b)

(c)

(d)

Fig 6. Shots from our virtual global terrain environment
application: Fig (a) and Fig (b) are two snapshots of
our application. In Fig (c) there is no collision
detection and response, the camera penetrates the
terrain, the terrain seems to be cracked; In Fig (d)
there is collision detection and response, the camera
couldn’t penetrate the terrain, the terrain is more
realistic.

In order to compare to other collision detection
algorithms, we implement the algorithms using sphere
trees used by Susana [21] in our application. However,
there is a little change. We neglect collisions during
each frame, so we build a sphere for the camera instead
of the motion of the camera. The total cost function for
interference detection can be formulated as the
following equation [23]:

T Nv Cv Np Cp= × + × (2)
 where
T : total function for interference detection
Nv : number of bounding volume pair overlap tests
Cv : cost of testing a pair of bounding volumes for
overlap
Np : is the number primitive pairs tested for
interference
Cp : cost of testing a pair of primitives for interference

In our application, suppose there are n terrain tiles
and each terrain tile has m m× vertices. It is obvious
that the time complexity of the algorithm using sphere
trees is 2(,)O n m . Table 1 summarizes the time
complexity of QOTCD is ()O n . As the comparison
operation is very fast, the time complexity of
QOTCD ()O n is nearly (1)O . An experiment (we set
m =17 and the radius of the sphere covering the camera
is 50 meters) proves our prediction as shown in Fig 7.:
the collision time of the algorithm using sphere trees
increases with the number of terrain tiles in a nearly
linear relationship, the collision time of QOTCD is
nearly constant with the increase of the number of
terrain tiles. The performance of QOTCD is about
dozens of times faster than the algorithm using sphere
trees. That the maximal collision time of QOTCD is
less than 1 millisecond contributes to run our
application at real-time rate.

Our algorithm has several limitations. Firstly our
algorithm directly gets the maximal terrain height of
nearby vertices at cost of certain accuracy. Secondly
our algorithm does not return any overlap information.
Thirdly our algorithm is only applicable to virtual
global terrain environments up to now.

Table 1. Number of operations per calculation for
QOTCD

Step 1: Translating the
camera position from the
standard 3D space into the
sphere space and computing
the distance from the camera
to Intersecting Point

3 squares, 1 square root, 2
divisions, 1 arc sine, 1 arc
tangent, 1 subtraction.

Step 2-1: finding Intersecting
Terrain Tile

4 comparisons

Step 2-2: Reading the terrain
height of Terrain Point from
Intersecting Terrain Tile

2 divisions,
0～4 comparisons

Step 3: Comparing the
distance with the terrain
height

1 comparison

Total operations 4*n+5～4*n+9 comparisons,
3 squares, 4 divisions, 1
square root, 1 arc sine, 1 arc
tangent, 1 subtraction

561

5. Conclusions and future work

We have proposed an efficient collision detection
and response algorithm for virtual global terrain
environments. Our collision detection algorithm, Quick
Oriented Terrain Collision Detection, comparing to the
algorithm using sphere trees indicates up to an order of
magnitude improvement in detecting efficiency for our
application. Our collision detection algorithm neither
requires the precomputation of bounding volume
hierarchies nor the extra memory to save bounding
volume hierarchies. Additionally we give a fancy
collision response considering two situations. Our
collision detection and response is readily to make our
application run at real-time rate.

There are many avenues for future research. We
would like to refine our algorithm for greater efficiency
and more accuracy. We would like to do research on
collisions between objects besides collisions between
camera and terrain in our application. With the
development of GPUs, we would like to explore the
new programmability features of GPUs to further
improve the performance of collision detection and
response algorithms.

References
[1] L. Kavan, “Rigid Body Collision Response”, In
proceedings of the 7th Central European Seminar on
Computer Graphics, 2003.
[2] B. Naylor, J. Amanatides, W. Thibault, “Merging bsp trees
yield polyhedral modeling results”, In Proc. of ACM Siggraph,
1990, pp. 115-224.

[3] S. Gottschalk, M. Lin, “OBB-Tree: A hierarchical
structure for rapid interference detection”, Proc. of ACM
Siggraph'96, 1996, pp. 171-180.
[4] P. M. Hubbard, “Interactive collision detection”, In
Proceedings of IEEE Symposium on Research Frontiers in
Virtual Reality, 1993.
[5] J. Klosowski, M. Held, “Effcient collision detection using
bounding volume hierarchies of k-dops”, IEEE Trans. on
Visualization and Computer Graphics, 1998, 21–37.
[6] G. Baciu, S. K. Wong, H. Sun, “Recode: An image-based
collision detection algorithm”, Proc. of Pacific Graphics,
1998, pp. 497-512.
[7] M. Teschner, S. Kimmerle, “Collision detection for
deformable objects”, Computer Graphics Forum, 2005, 24(1),
61-81.
[8] N. K. Govindaraju, M. Lin, “Quick-cullide: Fast inter- and
intra-object collision culling using graphics hardware”, In
IEEE Conf. on Virtual Reality, 2005.

[9] N. K. Govindaraju, I. Kabul, M. Lin, “Fast continuous
collision detection among deformable models using graphics
processors”, Computers and Graphics, 2007, 31(1), 5-14.
[10] Sung-Soo. Kim, Seung-Woo. Nam, In-Ho. Lee,
“Hardware-Accelerated Ray-Triangle Intersection Testing for
High-Performance Collision Detection”, Proceedings of Third
International MIRAGE Conference, 2007, pp. 70-81.
[11] S. Uno, M. Slater, “The Sensitivity of Presence to
Collision Response”, Proc. Of IEEE Virtual Reality Annual
International Symposium, 1997.
[12] B. Geiger, “Real-Time Collision Detection and Response
for Complex Environments”, Computer Graphics
International 2000 (CGI'00), 2000.
[13] M. Moore, J. Wilhelms, “Collision Detection and
Response for Computer animation”, Computer Graphics,
1988, 22(4), 289-298.
[14] D. Baraff and A. Witkin, “Large steps in cloth
simulation”, SIGGRAPH 98 Conference Proceedings, 1998,
pp. 43-54.
[15] B. Mirtich, J. Canny, “Impulse-based simulation of rigid
bodies”, Symp. On Interactive 3D Graphics, 1995.
[16] F. Policarpo, A. Conci, “Real-Time Collision Detection
and Response”, XIV Brazilian Symposium on Computer
Graphics and Image Processing (SIBGRAPI'01), 2001.
[17] V. Vuskovic, M. Kauer, G. Székely, M. Reidy, “Realistic
force feedback for virtual reality based diagnostic surgery
simulators”, Proc. ICRA '00, IEEE International Conference
on Robotics and Automation, 2000, pp. 1592-1598.
[18] B. Lee, D. Popescu, and S. Ourselin, “Contact modelling
based on displacement field redistribution for surgical
simulation”, Medical Imaging and Augmented Reality:
proceedings of the 2nd International Workshop (MIAR 2004),
2004, pp. 337-345.
[19] C. Basdogan, C. Ho, M. A. Srinivasan, “Virtual
environments for medical training: graphical and haptic
simulation of laparoscopic common bile duct exploration”,
IEEE/ASME Transactions on Mechatronics, 2001.
[20] O. Etzmus, B. Eberhardt, M. Hauth, W. Straser,
“Collision Adaptive Particle Systems”, The Eighth Pacific
Conference on Computer Graphics and Applications, 2000.
[21] Susana López, Borja Fernández, “COLLISION
MODULE INTEGRATION IN A SPECIFIC GRAPHIC
ENGINE FOR TERRAIN VISUALIZATION”, Proceedings
of the Eighth International Conference on Information
Visualisation (IV’04), 2004.
[22] J. W. Barrus, R. C. Water, “QOTA: A Fast, Multi-
Purpose Algorithm for Terrain Following in Virtual
Environments”, Proceedings of the second Symposium on
Virtual Reality Modeling, 1997, pp. 59-64.
[23] P. K. Egbert, S. H. Winkler, “Collision Free Object
Movement Using Vector Fields”, IEEE Computer Graphics
and Applications, 1996, 16(4), 18-24.
[24] K. Fauerby, “Improved Collision detection and
Response”, http://www.peroxide.dk, 2003.
[25] H. Weghorst, G. Hooper, D. Greenberg, “Improved
computational methods for ray tracing”, ACM Transactions
on Graphics, 1984, pp. 52–69.

562

Fig 7. Performance comparison between QOTCD and the algorithm using sphere trees

563

