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A New APSP Algorithm for Integer-weighted Sparse Graphs
Yuefeng Huang™', Ershun Zhong?, Yunjin Li*
Abstract

We present a new all pairs shortest paths algorithm for directed sparse graphs with non-negative
integer weights. For a graph with n vertices and m edges, the algorithm runs in O(mn + nC) time,
where C is the maximal edge weight. In comparison with the best previous time bound of
O(mn + n* loglog(min{n,C})), our algorithm runs faster for the case that C is lower than
nloglog(min{n,C}).

We also prove that with high probability the time bound of this algorithm is

* The State Key Lab of Resources and Environmental Information System, Institute of Geographic Sciences and Natural
Resources Research, CAS, China.

! E-mail: yuefenghuang.study@gmail.com

% E-mail: zhongershun@supermap.com

? E-mail: liyunjin@supermap.com

564



O(mn + Clogn/(logm—logn)),(m/n=C,>1) .Our algorithm is more probable to get to the
theoretical lower time bound O(mn) of any path-comparison based algorithm for APSP.

Keyword
APSP; shortest path; sparse graphs
1 Introduction

The all pairs shortest paths (APSP) problem is one of the best known algorithms in algorithm
design and textbook algorithm. Nearly all APSP algorithms can be divided into two groups: those
which assume dense graphs by matrix multiplication, and those which assume sparse graphs by
repeating single source shortest path algorithm based on a series of comparison and addition
operations. We consider here the case that the input is a directed sparse graph with non-negative
integer weights.

1.1 Related work

For dense graphs with n vertices, matrix multiplication is generally applied in APSP. The
classical Floyd-Warshall algorithm [1] runs in O(n3) time. Fredman [2] was the first to realize the
possibility of a sub-cubic algorithm, and then a series of improvements appeared in a number of
papers. Recently Chan [3] [4] proposed two algorithms with the time bound O(n’ /logn) and
O(n’log’ logn/log® n), and Han [5] announced an O(n’ log”*logn/log®* n) time algorithm.
Finally, Yuster [6] gave the O(n”®***) time algorithm for real vertex-weighted graphs.

For sparse graphs, a more efficient solution to APSP is to apply single source shortest path
algorithm » times. For the case of non-negatively weighted graphs, Dijkstra's algorithm [7] with
Fibonacci-heap [8] solves single source shortest path in O(m+nlogn) time, where m is the count
of edges. By repeated applications of that algorithm, APSP is solved in O(mn +n’ logn) . Johnson's
algorithm [9] preserved reduction from arbitrary weighted to non-negatively weighted graphs,
assuming non-negative weight cycles. Combination with Dijkstra's algorithm implies an
O(mn+n2 logn) time cost for general APSP algorithm. The component hierarchy model is an
important approach for shortest path problems. Thorup [10], the inventor of that approach, showed
that single source shortest path for undirected non-negative integer weighted graphs was solved in
O(m) time. Hagerup [11] generalized Thorup's approach to directed integer weighted graphs and
gave an O(mn+n”loglogn) APSP algorithm. Pettie and Ramachandran [12] adapted Thorup's
approach to real weighted graphs and comparison-addition model, considering an O(mnloga)
APSP algorithm for undirected graphs, where o = a(m,n) is the inverse-Ackermann function. An
experimental study by Pettie [13] of a simplified version of this algorithm showed that it was
decisively faster than Dijkstra's algorithm. Pettie [14] also showed a directed APSP algorithm with the
comparison-addition complexity of O(mnlog ). After that, Pettie [15] gave the final version of the
algorithm for real weighted directed graphs with the time bound of O(mn+n>loglogn) in the
comparison-addition model.

There are also time bounds in terms of C, where C is the maximal edge weight. Ahuja et al [16]
provided a single source shortest path algorithm with the running time O(m + n\/logC), which
means time bound of O(mn+n’\/logC) for APSP Cherkassky, Goldberg, and Silverstein [17]
provided a lower time bound of O(m+n\/— ) for any fixed & >0, with the time bound of
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O(mn+n \/E ) for APSP. Raman [18] gave a new O(m+ n\/7 ) single source shortest path
algorlthm with the time bound of O(mn + nzi‘/_ ) for APSP. Thorup [19] gave the current best
O(m+n”loglogmin{n,C}) time bound. Our algorithm also gives the time bound in this term.

1.2 Main results

Traditional methods repeat single source shortest path »n times, while we propose an algorithm
which calculates all pairs shortest paths at the same time. The algorithm works in the manner of
Dijkstra's algorithm. Every edge is relaxed for n times, and all the n’ shortest paths are sorted by
counting sort. The algorithm has the complexity as to Theorem 1.

Theorem 1. Let G=(V,E) be a non-negative integer weighted directed graph with |V |=n and
| E|=m. There is an algorithm that solves APSP problem in O(mn+ nC) time, where C is the
maximal edge weight.

The edges of any shortest path is not more than the edges of the diameter of the graph. We prove
that the counting sort algorithm has a far less complexity with high probability by random graph
theory. Our algorithm has a complexity with high probability as to Theorem 2.

Theorem 2. Let m/n=C,>1. With high probability, this algorithm solves APSP problem in
O(mn + Clogn/(logm—logn)).

As usual, we say that an event holds high probability or whp if its probability tends to 1 as
n— oo,

In Section 2 we give a general description of the integer weight model, on which we perform our
algorithm. In Section 3 we give the proof of Theorem 1. In Section 4 we give the proof of Theorem 2
by random graph theory. In Section 5, we give the lower time bound of path-comparison APSP
algorithm in theory. Our algorithm is more probable to get close to that time bound. In Section 6 we
discuss some open problems.

2  Preliminaries

Our computational model is word RAM. The word-size of the processor is determined, limiting
how big integers can be operated on in constant time. We assume that the word-size W is bigger than
the nC, so that we can address the different shortest path costs with single words. Besides direct and
indirect addressing and conditional jumps, our algorithm only uses addiction and operation on a
constant number of words in constant time, composing the minimal instructions set. The memory is
divided into words, addressed 0, 1, 2... The time is the number of instructions performed and the space
is the maximal address used.

The essential advantage of dealing with integer weights is that we can use them to compute
addresses in bucket based algorithms directly, which is the key point of our algorithm. We note that
our algorithm also works for real weighted graphs. The IEEE 754 floating point standard [20] is
designed so that the ordering of float point numbers can be deduced by perceiving their
representations as integers. Thus the time bound of our algorithm holds equally well for real weighted
graphs.
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3 The APSP algorithm

In this section, we prove Theorem 1. First, we give the exact description of our APSP algorithm.
Second, we present the counting sort is powerful for this algorithm. In the end, we give the
complexity.

A graph is a pair G=(V,E) of sets such that £ c[V']. The elements of E are 2-element
subsets of V such that E :{(i, j)|i elV,je V} .V is the vertices set and E is the edges set. The
weight of a edge e(i, j) is w(e(i,j)) or w(i,j) for short. We propose an APSP algorithm for a
directed graph with non-negative integer weight, then e(i, j) # e(j,i) and w(i, j) > 0. The shortest
path from the source vertex i to the destination vertex j is denoted by sp(i, j) .

The algorithm is summarized as follows:

Algorithm.

S1: initialize by putting all the edges into the candidate set S, , of the shortest paths;
S2: select the minimum element from S, ,, output it as one of the shortest paths sp(i, j) ;

S3: if e(j,k)eE and sp(i,k) is not outputted, set w(i,k)=min{w(i, j)+w(j, k), w(i,k)}

and put it into S

cand ’

that is a relaxing operation,
S4: ifall the shortest paths are not got, then go to S2, else end.

Lemma 1. We get all the shortest paths from one vertex to all the other vertices in an order by the
algorithm, and the order is the same as the one by Dijkstra's algorithm.

Proof. For each vertex v,, let sp(i, j) <sp(i,k). sp(i,j) must be outputted before sp(i,k) in
our algorithm by S2. Calculate the shortest paths from v, by Dijkstra's algorithm. The vertex v,
must be selected into the shortest-paths tree before v, if sp(i, j) <sp(i,k). Lemma 1 is proved. []

Lemma 1 implies that our algorithm gets all pairs shortest paths of the graph the same as
repetitions of single source shortest path algorithm # times.

Lemma 2. Every edge is relaxed n times at most in our algorithm and all relaxations add O(mn)
complexity.

Proof. Each edge e(i, j) is relaxed iff the shortest path to v, is outputted. There are n shortest
paths to vV, , 80 it is relaxed exactly n times for m edges adding O(mn) complexity. ]

Theorem 1. Our algorithm solves APSP problem in O(mn+ nC) time, where C is the maximal
edge weight.

Proof. There are n° elementsin S, at most. Comparison sorts limit the complexity by the lower
bound of O(n’logn). The maximum element is the maximum-length shortest path in the graph
denoted by max-SP. It is less than nC , because any shortest path contains no more than n vertices.
Counting sort works out the same order in O(n*+nC) . By Lemma 2, the total time is
O(mn+n>+nC). m is surely not less than n for a connected graph, so the time bound is
O(mn+nC). By Lemma 1, our algorithm solves APSP problem in O(mn+nC). O

4  Probabilistic analysis

In this section, we prove that the complexity of our algorithm is smaller than we have proved in
Section 3 by random graph theory. The maximum shortest path (max-SP) contains no more edges than
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the diameter of the graph. The second part of the complexity in Theorem 1 is decreased from nC to
diam(G)C . Further more, the diameter of a graph with »n vertices is proved to be
O(logn/(logm—logn)) with high probability.

Lemma 3. Max-SP is no more than diam(G)C, where diam(G) is the diameter of graph.

Proof. Let W be the weight of the shortest path from source vertex i to destination vertex j. If the
shortest path is the max-SP and W > diam(G)C, then W /C > diam(G). That means there is a

path from i to j, which has a longer distance than diam(G). So there is not a shortest path more than
diam(G)C . O

The two frequently occurring models for random graphs are G(n, p) and G(n,m). G(n,p)
consists of all graphs with » vertices in which the edges are chosen independently with the probability
p. p is between 0 and 1. G(n,m) consists of all graphs with n vertices and m edges, in which the
graphs have the same probability. m is close to pn(n—1)/2. Bollobas [22] found that the two
models are interchangeable. Lemma 4 gives this property.

Lemma 4 (Bollobas [22]). If a property is convex and p(1—p)n(n—1)/2 — o, then G(n,p)
has the property with high probability iff for every fixed x G(n,m) has the same property with high
probability, where m = Lpn(n —1)/2+x(p(1-p)n(n—1)/2)" J Afx=0, m= Lpn(n -1/ ZJ .

The diameter is a convex property. For a directed graph, m is the lower bound of pn(n—1)and
p=m/n(n-1). If n—>o0o, p(l—pn(n-1)/2=m(n*—n—-m)/(n*>—n)—>o. So Lemma 4
works well for directed sparse graphs. In the left of this section, we use the model of G(n, p) for
convenience.

Lemma 5. If logn>np >c>1, diam(G(n, p))=O(logn/log(np)) with high probability.

Proof. Chung and Lu [21] proved that if logn>np>c>1, diam(G(n,p))=O(logn/log(np))
with high probability, so Lemma 5 is proved. Ll

Definition 1 (Bollobas [22]). A property will be said to be monotone increasing or simply monotone if
whenever G, has the property and G, G, then G, also has the property.

Diameter is a monotone increasing property. If G, has a diameter with the distance of D and G,
has the same vertex set as G, but more edges, G, is created by adding edges one by one from G, .
Certainly, the diameter of G, is not longer than D.

Lemma 6. If np>c>1, diam(G(n, p))=O(logn/log(np)) with high probability.

Proof. Bollobas [22] proved that if a property is monotone increasing and p, < p,, then G(n, p,)
has the property with higher probability than G(n, p,). If np >logn, Lemma 5 is also true. Lemma
6 is proved. ]

Lemma 7. If np>c>1, diam(G(n,m))=0O(logn/(logm—logn)) with high probability.

Proof. By Lemma 4, Lemma 6, and p=m/n(n-1), diam(G(n,m))=0(logn/log(m/(n—1))).
Lemma 7 is proved. Ul

Theorem 2. Let m/n=c,>1 . Our algorithm solves APSP  problem in
O(mn+ Clogn/ (logm—logn)) with high probability.

Proof. By Theorem 1 and Lemma 7, this theorem is proved. U
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5 Complexity

We mainly focus on APSP algorithm for sparse graphs, so single source shortest path algorithm
makes a lot of sense. Most of the single source shortest path algorithms are adaptations to the original
Dijkstra's algorithm. There are two actions in Dijkstra's algorithm that determine the complexity:
looking up the smallest weight path, and relaxing its outgoing edges. All edges are relaxed once,
adding O(m) to the complexity of single source shortest path algorithm and O(mn) to the
complexity of APSP algorithm. Karger, Koller, and Phillips gave the lower time bound of APSP
algorithm in Definition 2 and Theorem 3, which is corresponding to that.

Definition 2. (Karger, Koller, and Phillips [24]) Any algorithm for all pairs shortest paths problem,
which uses the edge weight function only in comparing the weights of paths in the graph, is
path-comparison based APSP algorithm.

Theorem 3. (Karger, Koller, and Phillips [24]) Any path-comparison based APSP algorithm needs a
lower bound of CX(mn) in running time.

Looking up the smallest weight path adds to the complexity. So different sorting algorithms have
brought out a lot of developments in APSP algorithm. Our algorithm has a time bound O(mn + nC).
If C<m,we get the lower time bound O(mn), which is easily satisfied in practice in comparison
to the other algorithms with the condition of loglog(min{n,C}) < m/n. With high probability, our
time bound decreases to O(mn+ Clogn/(logm—logn)) . Furthermore,
C <mn(logm—logn)/logn may be satisfied more easily. In conclusion, there is a higher
probability for our algorithm to get to the lower time bound of O(mn) in practice.

6 Discussion

The complexity of our algorithm lies on the maximum shortest path. Our algorithm works faster
for denser graphs with bigger m /n . However, O(mn) also increases with m/n.If m>c n,the
second component is less than O( Clogn). If m gets nearer to n, the second component is more
complex. Riordan and Wormald [24] dealt with the diameter of random graphs when m is very near to
n, implying expected degree tending to 1. They proved that:

Theorem 4. (Riordan and Wormald [24]) Let &=¢&(n) satisfy 0<&<1/10 and
en>e""  for all large enough n. Set A=A(n)=1+¢ , and let A <l satisfy
Ae ™ =Ae " Then

diam(G(n, A/ n))=log(&’n)/logA + 2log(&’n)/log(1/4.)+0,(1/ €).

log' n denotes the least k such that log, n<1, where log, n=loglog...logn is the k-fold
iterated logarithm of n.

Theorem 4 is not considered in our algorithm for the moment. There may be a different method
for the case. If the degree of a vertex is 1, it and its edge should be in some shortest path or not with
no doubt. The vertex with the degree of 1 can be combined with its conjunction vertex and estimated
in the algorithm as one vertex, because there are not any different edges for a shortest path to choose
to get to its conjunction vertex. If m is very near to n, the graph is transformed into a really smaller
graph in this way. The complexity of this case will be considered in the future.
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