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摘要 

稀疏图是网络研究中常用的数学模型，我们提出了计算非负整数权稀疏图的所有结点之间最短

路径(All pairs shortest paths，简称 APSP)的高效算法，在与网络相关的研究中，该算法对于揭

示网络的拓扑结构具有较重要的意义。对于一个包含n 个结点和m 个弧段的非负整数权图, 该算法

计算所有结点之间最短路径的时间复杂度是 ( )O mn nC+ ，其中C 是弧段的最大权值。现有算法计

算该问题的最小时间复杂度是
2( log log(min{ , }))O mn n n C+ ，在实际应用中C 常常与 n 无关，即

对时间复杂度的影响小于 log log(min{ , })n n C ，所以我们的算法时间复杂度更小。 

 我们还根据随机图理论进一步分析了算法的复杂度，根据证明随着 n 的增大该算法时间复杂度

为 ( log / (log log ))O mn C n m n+ − 的概率趋近于100%。在一些实际问题中，网络普遍为 ( )m O n=

且C 与 n 无关的稀疏图（例如交通网络），这时该算法时间复杂度为 ( )O mn ，即为
2( )O n 。APSP 算

法的理论时间复杂度下限是 ( )O mn ，与其他算法相比，在解决实际问题时我们的算法更容易达到这

一理论下限。 
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Abstract 

We present a new all pairs shortest paths algorithm for directed sparse graphs with non-negative 
integer weights. For a graph with n vertices and m edges, the algorithm runs in ( )O mn nC+  time, 
where C  is the maximal edge weight. In comparison with the best previous time bound of 

2( log log(min{ , }))O mn n n C+ , our algorithm runs faster for the case that C  is lower than 
log log(min{ , })n n C .  

 We also prove that with high probability the time bound of this algorithm is 
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0( log / (log log )), ( / 1)O mn C n m n m n C+ − = > .Our algorithm is more probable to get to the 
theoretical lower time bound ( )O mn  of any path-comparison based algorithm for APSP. 
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1 Introduction 

The all pairs shortest paths (APSP) problem is one of the best known algorithms in algorithm 
design and textbook algorithm. Nearly all APSP algorithms can be divided into two groups: those 
which assume dense graphs by matrix multiplication, and those which assume sparse graphs by 
repeating single source shortest path algorithm based on a series of comparison and addition 
operations. We consider here the case that the input is a directed sparse graph with non-negative 
integer weights. 

1.1 Related work 

For dense graphs with n vertices, matrix multiplication is generally applied in APSP. The 
classical Floyd-Warshall algorithm [1] runs in 3( )O n  time. Fredman [2] was the first to realize the 
possibility of a sub-cubic algorithm, and then a series of improvements appeared in a number of 
papers. Recently Chan [3] [4] proposed two algorithms with the time bound 3( / log )O n n  and 

3 3 2( log log / log )O n n n , and Han [5] announced an 3 5/4 5/4( log log / log )O n n n  time algorithm. 
Finally, Yuster [6] gave the 2.842( )O n  time algorithm for real vertex-weighted graphs. 

For sparse graphs, a more efficient solution to APSP is to apply  single source shortest path 
algorithm n times. For the case of non-negatively weighted graphs, Dijkstra's algorithm [7] with 
Fibonacci-heap [8] solves single source shortest path in ( log )O m n n+  time, where m is the count 
of edges. By repeated applications of that algorithm, APSP is solved in 2( log )O mn n n+ . Johnson's 
algorithm [9] preserved reduction from arbitrary weighted to non-negatively weighted graphs, 
assuming non-negative weight cycles. Combination with Dijkstra's algorithm implies an 

2( log )O mn n n+  time cost for general APSP algorithm. The component hierarchy model is an 
important approach for shortest path problems. Thorup [10], the inventor of that approach, showed 
that single source shortest path for undirected non-negative integer weighted graphs was solved in 

( )O m  time. Hagerup [11] generalized Thorup's approach to directed integer weighted graphs and 
gave an 2( log log )O mn n n+  APSP algorithm. Pettie and Ramachandran [12] adapted Thorup's 
approach to real weighted graphs and comparison-addition model, considering an ( log )O mn α  
APSP algorithm for undirected graphs, where ( , )m nα α=  is the inverse-Ackermann function. An 
experimental study by Pettie [13] of a simplified version of this algorithm showed that it was 
decisively faster than Dijkstra's algorithm. Pettie [14] also showed a directed APSP algorithm with the 
comparison-addition complexity of ( log )O mn α . After that, Pettie [15] gave the final version of the 
algorithm for real weighted directed graphs with the time bound of 2( log log )O mn n n+  in the 
comparison-addition model. 

There are also time bounds in terms of C, where C is the maximal edge weight. Ahuja et al [16] 
provided a single source shortest path algorithm with the running time ( log )O m n C+ , which 
means time bound of 2( log )O mn n C+  for APSP. Cherkassky, Goldberg, and Silverstein [17] 
provided a lower time bound of 

13( )O m n C
ε+

+  for any fixed 0ε > , with the time bound of 
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12 3( )O mn n C
ε+

+  for APSP. Raman [18] gave a new 
14( )O m n C
ε+

+  single source shortest path 
algorithm, with the time bound of 

12 4( )O mn n C
ε+

+  for APSP. Thorup [19] gave the current best 
2( log log min{ , })O m n n C+  time bound. Our algorithm also gives the time bound in this term. 

1.2 Main results 

Traditional methods repeat single source shortest path n times, while we propose an algorithm 
which calculates all pairs shortest paths at the same time. The algorithm works in the manner of 
Dijkstra's algorithm. Every edge is relaxed for n times, and all the n2 shortest paths are sorted by 
counting sort. The algorithm has the complexity as to Theorem 1. 

Theorem 1. Let =( , )G V E  be a non-negative integer weighted directed graph with | |V n=  and 
| |E m= . There is an algorithm that solves APSP problem in ( )O mn nC+  time, where C is the 
maximal edge weight. 

The edges of any shortest path is not more than the edges of the diameter of the graph. We prove 
that the counting sort algorithm has a far less complexity with high probability by random graph 
theory. Our algorithm has a complexity with high probability as to Theorem 2. 

Theorem 2. Let 0/ 1m n C= > . With high probability, this algorithm solves APSP problem in 
( log / (log log ))O mn C n m n+ − . 

As usual, we say that an event holds high probability or whp if its probability tends to 1 as 
n →∞ . 

In Section 2 we give a general description of the integer weight model, on which we perform our 
algorithm. In Section 3 we give the proof of Theorem 1. In Section 4 we give the proof of Theorem 2 
by random graph theory. In Section 5, we give the lower time bound of path-comparison APSP 
algorithm in theory. Our algorithm is more probable to get close to that time bound. In Section 6 we 
discuss some open problems. 

2 Preliminaries 

Our computational model is word RAM. The word-size of the processor is determined, limiting 
how big integers can be operated on in constant time. We assume that the word-size W is bigger than 
the nC , so that we can address the different shortest path costs with single words. Besides direct and 
indirect addressing and conditional jumps, our algorithm only uses addiction and operation on a 
constant number of words in constant time, composing the minimal instructions set. The memory is 
divided into words, addressed 0, 1, 2... The time is the number of instructions performed and the space 
is the maximal address used. 

The essential advantage of dealing with integer weights is that we can use them to compute 
addresses in bucket based algorithms directly, which is the key point of our algorithm. We note that 
our algorithm also works for real weighted graphs. The IEEE 754 floating point standard [20] is 
designed so that the ordering of float point numbers can be deduced by perceiving their 
representations as integers. Thus the time bound of our algorithm holds equally well for real weighted 
graphs. 
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3 The APSP algorithm 

In this section, we prove Theorem 1. First, we give the exact description of our APSP algorithm. 
Second, we present the counting sort is powerful for this algorithm. In the end, we give the 
complexity. 

A graph is a pair =( , )G V E  of sets such that 2[ ]E V⊆ . The elements of E are 2-element 
subsets of V such that { }( , ) ,E i j i V j V= ∈ ∈ .V is the vertices set and E is the edges set. The 
weight of a edge ( , )e i j  is ( ( , ))w e i j  or ( , )w i j  for short. We propose an APSP algorithm for a 
directed graph with non-negative integer weight, then ( , ) ( , )e i j e j i≠  and ( , ) 0w i j ≥ . The shortest 
path from the source vertex i to the destination vertex j is denoted by sp( , )i j . 

The algorithm is summarized as follows: 

Algorithm. 
S1: initialize by putting all the edges into the candidate set candS  of the shortest paths; 
S2: select the minimum element from candS , output it as one of the shortest paths sp( , )i j ; 
S3: if ( , )e j k E∈  and sp( , )i k  is not outputted, set ( , ) min{ ( , ) ( , ), ( , )}w i k w i j w j k w i k= +              
and put it into candS , that is a relaxing operation; 
S4: if all the shortest paths are not got, then go to S2, else end. 

Lemma 1. We get all the shortest paths from one vertex to all the other vertices in an order by the 
algorithm, and the order is the same as the one by Dijkstra's algorithm. 

Proof. For each vertex iv , let sp( , ) sp( , )i j i k≤ . sp( , )i j  must be outputted before sp( , )i k  in 
our algorithm by S2. Calculate the shortest paths from iv  by Dijkstra's algorithm. The vertex jv  
must be selected into the shortest-paths tree before kv  if sp( , ) sp( , )i j i k≤ . Lemma 1 is proved.□ 

Lemma 1 implies that our algorithm gets all pairs shortest paths of the graph the same as 
repetitions of single source shortest path algorithm n times.  

Lemma 2. Every edge is relaxed n times at most in our algorithm and all relaxations add ( )O mn  
complexity. 

Proof. Each edge ( , )e i j  is relaxed iff the shortest path to jv  is outputted. There are n shortest 
paths to jv , so it is relaxed exactly n times for m edges adding ( )O mn  complexity.           □ 

Theorem 1. Our algorithm solves APSP problem in ( )O mn nC+  time, where C is the maximal 
edge weight. 

Proof. There are 2n  elements in candS  at most. Comparison sorts limit the complexity by the lower 
bound of 2( log )O n n . The maximum element is the maximum-length shortest path in the graph 
denoted by max-SP. It is less than nC , because any shortest path contains no more than n vertices. 
Counting sort works out the same order in 2( )O n nC+ . By Lemma 2, the total time is 

2( )O mn n nC+ + . m is surely not less than n for a connected graph, so the time bound is 
( )O mn nC+ . By Lemma 1, our algorithm solves APSP problem in ( )O mn nC+ .             □ 

4 Probabilistic analysis 

In this section, we prove that the complexity of our algorithm is smaller than we have proved in 
Section 3 by random graph theory. The maximum shortest path (max-SP) contains no more edges than 
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the diameter of the graph. The second part of the complexity in Theorem 1 is decreased from nC  to 
( )diam G C . Further more, the diameter of a graph with n vertices is proved to be 

(log / (log log ))O n m n−  with high probability. 

Lemma 3. Max-SP is no more than ( )diam G C , where ( )diam G  is the diameter of graph. 

Proof. Let W be the weight of the shortest path from source vertex i to destination vertex j. If the 
shortest path is the max-SP and ( )W diam G C> , then / ( )W C diam G> . That means there is a 
path from i to j, which has a longer distance than ( )diam G . So there is not a shortest path more than 

( )diam G C .                                                                     □ 

The two frequently occurring models for random graphs are ( , )G n p  and ( , )G n m . ( , )G n p  
consists of all graphs with n vertices in which the edges are chosen independently with the probability 
p. p is between 0 and 1. ( , )G n m  consists of all graphs with n vertices and m edges, in which the 
graphs have the same probability. m is close to ( 1) / 2pn n − . Bollobás [22] found that the two 
models are interchangeable. Lemma 4 gives this property. 

Lemma 4 (Bollobás [22]). If a property is convex and (1 ) ( 1) / 2p p n n− − →∞ , then ( , )G n p  
has the property with high probability iff for every fixed x ( , )G n m  has the same property with high 
probability, where 1/2( 1) / 2 ( (1 ) ( 1) / 2)m pn n x p p n n⎢ ⎥= − + − −⎣ ⎦ . If x=0, ( 1) / 2m pn n= −⎢ ⎥⎣ ⎦ . 

The diameter is a convex property. For a directed graph, m is the lower bound of ( 1)pn n − and 
/ ( 1)p m n n= − . If n →∞ , 2 2(1 ) ( 1) / 2= ( ) / ( )p p n n m n n m n n− − − − − →∞ . So Lemma 4 

works well for directed sparse graphs. In the left of this section, we use the model of ( , )G n p  for 
convenience. 

Lemma 5. If log 1n np c> ≥ > , ( ( , ))= (log / log( ))diam G n p O n np  with high probability. 

Proof. Chung and Lu [21] proved that if log 1n np c> ≥ > , ( ( , ))= (log / log( ))diam G n p n npΘ  
with high probability, so Lemma 5 is proved.                                           □ 

Definition 1 (Bollobás [22]). A property will be said to be monotone increasing or simply monotone if 
whenever 1G  has the property and 1 2G G⊂  then 2G  also has the property. 

Diameter is a monotone increasing property. If 1G has a diameter with the distance of D and 2G  
has the same vertex set as 1G  but more edges, 2G  is created by adding edges one by one from 1G . 
Certainly, the diameter of 2G  is not longer than D. 

Lemma 6. If 1np c≥ > , ( ( , ))= (log / log( ))diam G n p O n np  with high probability. 

Proof. Bollobás [22] proved that if a property is monotone increasing and 1 2p p≤ , then 2( , )G n p  
has the property with higher probability than 1( , )G n p . If lognp n≥ , Lemma 5 is also true. Lemma 
6 is proved.                                                      □ 

Lemma 7. If 1np c≥ > , ( ( , ))= (log / (log log ))diam G n m O n m n−  with high probability. 

Proof. By Lemma 4, Lemma 6, and / ( 1)p m n n= − , ( ( , ))= (log / log( / ( 1)))diam G n m O n m n − . 
Lemma 7 is proved.           □ 

Theorem 2. Let 0/ 1m n c= > . Our algorithm solves APSP problem in 
( log / (log log ))O mn C n m n+ −  with high probability. 

Proof. By Theorem 1 and Lemma 7, this theorem is proved.              □ 
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5 Complexity 

We mainly focus on APSP algorithm for sparse graphs, so single source shortest path algorithm 
makes a lot of sense. Most of the single source shortest path algorithms are adaptations to the original 
Dijkstra's algorithm. There are two actions in Dijkstra's algorithm that determine the complexity: 
looking up the smallest weight path, and relaxing its outgoing edges. All edges are relaxed once, 
adding ( )O m  to the complexity of single source shortest path algorithm and ( )O mn  to the 
complexity of APSP algorithm. Karger, Koller, and Phillips gave the lower time bound of APSP 
algorithm in Definition 2 and Theorem 3, which is corresponding to that. 

Definition 2. (Karger, Koller, and Phillips [24]) Any algorithm for all pairs shortest paths problem, 
which uses the edge weight function only in comparing the weights of paths in the graph, is 
path-comparison based APSP algorithm. 

Theorem 3. (Karger, Koller, and Phillips [24]) Any path-comparison based APSP algorithm needs a 
lower bound of ( )mnΩ  in running time. 

Looking up the smallest weight path adds to the complexity. So different sorting algorithms have 
brought out a lot of developments in APSP algorithm. Our algorithm has a time bound ( )O mn nC+ . 
If C m≤ , we get the lower time bound ( )O mn , which is easily satisfied in practice in comparison 
to the other algorithms with the condition of log log(min{ , }) /n C m n≤ . With high probability, our 
time bound decreases to ( log / (log log ))O mn C n m n+ − . Furthermore, 

(log log ) / logC mn m n n≤ −  may be satisfied more easily. In conclusion, there is a higher 
probability for our algorithm to get to the lower time bound of ( )O mn  in practice. 

6 Discussion 

The complexity of our algorithm lies on the maximum shortest path. Our algorithm works faster 
for denser graphs with bigger /m n . However, ( )O mn  also increases with /m n . If 0m c n≥ , the 
second component is less than ( log )O C n . If m gets nearer to n, the second component is more 
complex. Riordan and Wormald [24] dealt with the diameter of random graphs when m is very near to 
n, implying expected degree tending to 1. They proved that: 

Theorem 4. (Riordan and Wormald [24]) Let ( )nε ε=  satisfy 0 1/10ε< <  and 
* 43 (log )nn eε ≥  for all large enough n. Set = ( ) 1nλ λ ε= + , and let * 1λ <  satisfy 

*
*e eλ λλ λ− −= .Then 

3 3
*( ( , / ))=log( )/log 2log( )/log(1/ )+ (1/ )pdiam G n n n n Oλ ε λ ε λ ε+ . 

*log n  denotes the least k such that log 1k n < , where log = log log...logk n n  is the k-fold 
iterated logarithm of n. 

Theorem 4 is not considered in our algorithm for the moment. There may be a different method 
for the case. If the degree of a vertex is 1, it and its edge should be in some shortest path or not with 
no doubt. The vertex with the degree of 1 can be combined with its conjunction vertex and estimated 
in the algorithm as one vertex, because there are not any different edges for a shortest path to choose 
to get to its conjunction vertex. If m is very near to n, the graph is transformed into a really smaller 
graph in this way. The complexity of this case will be considered in the future. 
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