

SHARP MAPPING

Machine Guidance: An implementation of Machine Guidance to improve unit productivity and office monitoring

Survey Equipment and IoT Solution Provider

December 2021

Justin Lim info@sharpmapping.com

Justin Lim

- Founder at Sharpmapping
- Computer engineering & Management from McMaster University, Canada
- 5 years as a Lead software engineer at Reuters working on realtime financial data application development
- 4 years in Coal Exploration & development
- About 10 years in Indonesia
- Now supplying survey and sensor equipment to project companies

AGENDA

- Indonesia Overview
- Mining Industry
- Customer Requirements
- Our solution
- Questions

(2 min) (5 min) (5 min) (15 min) (3 min)

SHARPMAPPING

• SHARPMAPPING started in 2011

- 10 20 Team members
- Systems integrator and authorized distributor of CHC Nav (Huace Navigation from Shanghai)
- Supermap distributor in Indonesia

Product sales (RTK GPS since 2012) IoT Sensor Projects (10+ Projects since 2018) Drilling guidance (3 projects since 2020) Excavator guidance (1 projects since 2019) Bathymetry (multiple projects since 2018) Road watering (1 project in 2019)

IN PROGRESS/FUTURE: Environmental monitoring (2021) Asset tracking (2022)

Indonesia's main exports

Coal	Petroleum Gas	Copper Ore	Lignite	Insulated 0.75%	Gantina Gantina G.429k	3.995		Rubbe	er	Res. 1.10%
Briquettes		1.7%	1.6%	Office Machine Parts 0.77556 Video				3.0%		
	4.8% Crude	Refined Petroleum	0.38%	Les Billip.	Hair Transmen Spect.			Raw Tin	niseL. 0.48%	Copper Not
10%	2.8%	1.2% Coal Tar Oil		Integrated Greats Knit	Nor-Kall Mer'S	1		0.98% Ferroalloys	Stainless Steel Semi	
Palm Oil		tearic Acid		0.72%	0.43% 0.38%	Refined Capper				
9.6%		1.8% oconut Oil		0.58% Rok Horen 7. 0.57%	Ros-Retail Systhetic. Ros-Retail Artificial.			Aquic.		
		1,7%		Non-Artoil.	Ros- Kait.			Crowing Crypts		

Picture of an Open Pit Coal mine

- Over burden = \$2.5 USD per Cubic
- Coal getting = \$1.3 USD per ton

Picture of an Open Pit Coal mine

- Over burden = \$2.5 USD per Cubic
- Coal getting = \$1.3 USD per ton

Digitizing the mine area

Note: graphic above is borrowed from a Dassault Systems Presentation

Traditional tools and process

Staking out mining XY boundaries

Customer requirements – Excavator guidance

- GPS Based
- Overlay with Design
- Overlay with design/work area
- Accuracy +/- 20 cm
- Monitoring by Supermap control center software

Machine Guidance

Note : Positional data of the bucket is streamed via TCP stream to the server

TX63 Machine Guidance Excavator

CHC MC100 - GNSS w/ Trimble Board BD982 CHC PM103 Power Module CHC AB103 Junction Box

Cabin View

Design View

Basemap View

Mixed View

Key Features of TX63

- Boundary Area Alarm
- Basemap
- Ability to use local coordinate systems/Coordinate transformation
- Streaming positional data via TCP Steam

Excavator dimensions

- "C" (Max Digging Depth) = 9.2m
- Drilling depth = 9m
- Hence blasting material to be loaded in two layers

Scatter Point map

Bucket Scatter Point Map over time

info@sharpmapping.com

Bucket Scatter Point Map over time

Using the bottom surface, we can calculate the volume of mined material

Using the bottom surface, we can calculate the volume of mined material

Accuracy at the bucket

TCP Streamed Data sent to Supermap

- JSON data
- TCP stream with the following format:

{"AVRData":"\$PTNL,AVR,080028.90,+274.4228,Yaw,-0.0262,Tilt,,,4.618,3,1.5,28*37","GGAData":"\$GNGGA,080028.90,0 343.44705124,S,10342.85312745,E,4,14,0.7,-32.932,M,10.364,M,2.9,0001*5D","HDTData":"\$GNHDT,274.423,T* 2F","ZDAData":"\$GNZDA,080028.93,12,06,2020,00,00*75","east":" 357214.8639731771","gpsTime":"1591948935222","height":"-28.0042525790","id":"1814","north":"9588275.7663439810"}

Analysis and Value-add of the data

• This is the data sent to Supermap for further processing:

- 1. Auto-Topography, volume of materials mined
- 2. Calculating productivity of the excavator operator
- 3. Calculating Physical Availability, UA
- 4. Office GIS and Front End Dashboard for unit positional monitoring
- 5. Dispatch

Daily Operation Monitoring Dashboard

- Access real time equipment sensor
- Display cut and fill (and other that matters) information from sensor
- Generate playback route from each equipment
- Produce surface points from each sensor elevation
- Generate daily report

Geofence for Equipment Boundary Monitoring

Generate a virtual perimeter from design file as a geofence so that every time the equipment crossing the boundary, an alert will appear.

This is good to ensure each equipment work inside where they should be.

Weekly Operation Dashboard

- Display distribution of site on map
- Report of equipment activity each week (the number of active, idle, and on maintenance)
- Calculate the progress of each equipment by comparing the surface from design and equipment elevation.

Data Warehouse and Management

- Old data tracking
- Spatial and non spatial data management
- Data access authorization
- Report management
- User Level Management

Summary Results and Benefits

- Save costs by mining to design limits and reduce over cutting
- Reduce survey team (ie, increased safety)
- Reduce errors
- Increase loading effectiveness poor lighting
- Better tracking of equipment
- After implementation, it took approx. 2 months for the operators to adjust but eventually increased efficiency in mining by about 11%

CONTACT US

Justin Lim +62 812 1080 808

info@sharpmapping.com

www.sharpmapping.com

