GIS in Urban & Rural / Regional Planning

Kazi Saiful Islam

Urban and Rural Planning Discipline, Khulna University

eMail: saiful@urp.ku.ac.bd

CONTENTS

Determinants of GIS application

Typology of Data Data and Technology Way forward

Determinants of GIS Application

Application of GIS is largely determined by the philosophy and purpose of planning.

Purpose of using GIS in URP

Descriptive and Predictive Models

Describe existing situation, Forecast future, Identify problems

Assess supply and demand

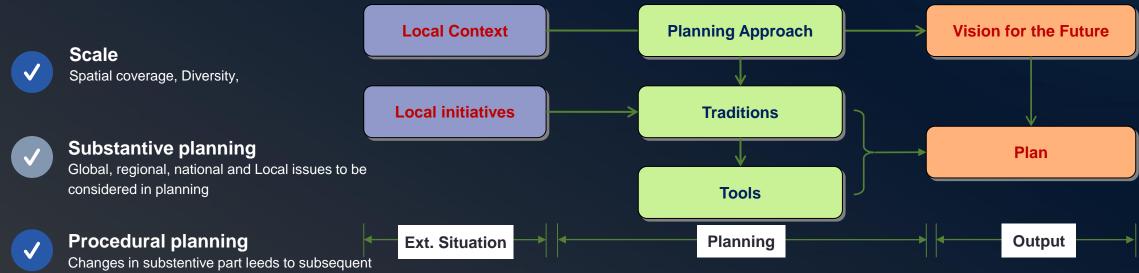
Concisely express your thoughts and keep the style of template.

Monitor changes Model changes, relationship, impacts and

contingencies

Communicate to decision makers

Concisely express your thoughts and keep the style of template.



Approach, scale and typology

Planning philosophy and approach Purpose, local contexts and local initiatives

change procedural planning

Major Typology of Data

Generally planners need data on demography and economy, Environment, land use and transportation, and infrastructure and services.

Population and Economy

Slze

Space reuirements for future housing, retail and office, manufacturing, and community facilities and open space



Composition

Employment composition, Age-sex structure, Household type, ethnic/cultural & socioeconomic groups

Spatial Distribution

Necessary to assess the distribution of community facilities; access to jobs, shopping; exposure to different kinds of problems (e.g., flooding); and for differentiating impacts among segments of the population.

Employment Density Map (Benapole-Jessore Corridor Plan)

Laujani Baza

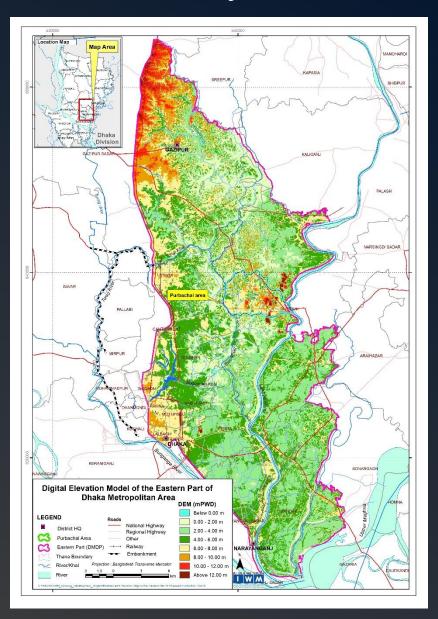
Kargacha

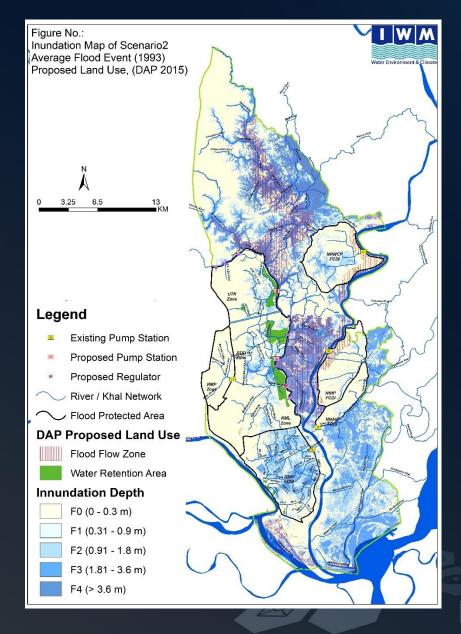
Chachra

Environmental Systems

Topography and Slop Mountains, valleys, plains, lakes, rivers, cannels →Fill & cut, water logging, land slide

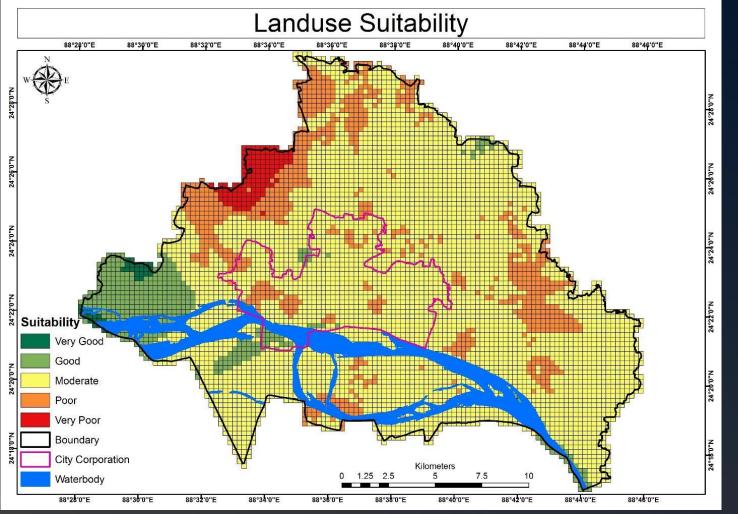
Soil survey, Seismic vulnerability assessment Weight-bearing capacity, Shrink swell, Infiltration capacity, Erodibility


Ecological sensitivity, Wetlands, Forest, Watershe Flood-flow zone


Hydrologic modeling

1									
K	Return period (year)	2.33	5	20	50	100			
	Water Level (m PWD)	4.77	5.25	5.91	6.27	6.53			
7	at Jhikargacha								
	Area (m ²)	12194	16259	21771	24977	27066			
5	(%) of the study area	41.65	55.54	74.36	85.31	92.45			

Legend							
	National Highway						
	Regional Highway						
Period of return							
	2.33						
	5						
	20						
	50						
	100						


Environmental Systems (Hydrological modeling)



Environmental Systems (Earthquake Sensitive LU)

Peak ground acceleration, Foundation layer depth, Soil Type, Liquefaction Potential Index, Building Height Recommendation

Land Use (Mapping)

Updated physical feature map

10	Floor	Impo_struc_Name	Age(10, 20,50)	Address (Hill, Rill, Block/Sector/Postal	D/U	Structure Use_Floor_1	Struct Use_Hoor_2	Struc Use_Floor_3	Structure_Floor_4	Struc Use_Floor_4+
99	SP			19/2 margin	2	R				
100	7	Condial. Feroza	9	11/2 ORPHANAZ	18	Sochula avec	R	R	R	R+
01	2	821.2. 21225	30	17/2 WOZETATO	2	ALLE + SEL	K			
102	6	Karim Villa	12	last where out	13	MITTE	R	R	R	RT
13	6	Tange.	23	22/3/4/1	12	R+ 201022)	R	R	R	R
10A	5P			around ling		CANEDRA				
105	5	anistan a	15	22/3/20 57/08/	5	amadety R	R	R	R	R
106	SP			4	1	R				
107		नसाम	22	22-3-2	10	supple + K	R	R	R	R
	5	Set.	21	22/3/5	10	R	R	R	R	R
10	5P	ET: 51-	•	22/A-1	3	R	-			
10		aspir 1	10	22/A	4	R	R	R	R	
(p)	SP	2013 ST		22/74	1	R		11		11
12	5	(02/17) (02/17)	25	22/ 4/2	10	R	R	R	R	R

Land use map

Georeferenced MS Mouza Map

Base Map comprising Mouza Map and Photogrammetric Data

Sample surveyed Base Map of Physical Feature Survey

Transportation

Four-step Travel Forecasting Process

- Trip generation
- Trip distribution
- Modal split or mode choice
- Traffic assignment

 \checkmark

Assess supply and demand

- Transport Demand Data ← Population and Socio-Economic Conditions (Zone wise)
- Traffic Volume Surveys ← Screen Line Survey, Cordon Survey, Intersection Turning Movement Survey, Queue Length Survey, Travel Speed and Time Survey

Geographic Information Systems for Transportation (GIS-T)

Service Infrastructure

Water and Sewerage System

Community services

Religious stublishments, Health and Educational institutes, parks and playgrounds,

Waste Management System

Data sources and Technology

Analog and digital sources of data for planning information system, current barrers and future potentials

Spatial data

Cadastral map Till 1990, most of the plans used cadastral maps prepared at 1920-1930.

Total station and RTK-GPS Between 1990-2005, many plans (e.g. Rajshahi) used these technology.

Low-resolution satellite image Since early 1990s, we started using Landsat images (e.g. DMDP)

High-resolution and stereo satellite image

Since 2000, most of the plans used relatively satellite imageries with relatively high spatial resulation. We started using stereo-images around 2010~

UAS Current method of data collection.

Non-spatial data

Government Organizations

Bureau of Statistics (BBS), Local governments (e.g. City corporations), Other govt. organizations

Web-based data collection

Very limited application (propitory softwares do not let us customize, lacks integration, expensive and surveyors are not trained enough.

Manual data collection

Physical feature survey, socio-economic survey

Potentials

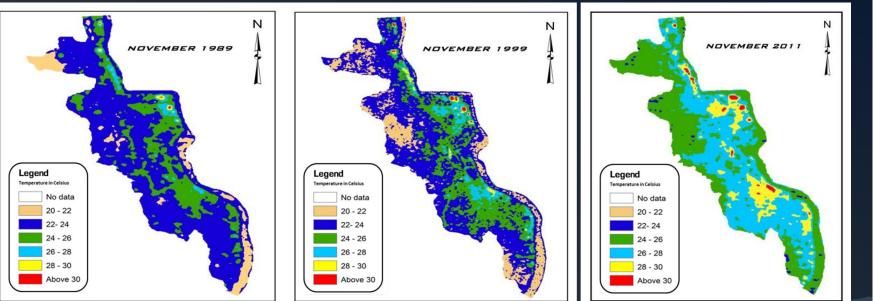
 \checkmark

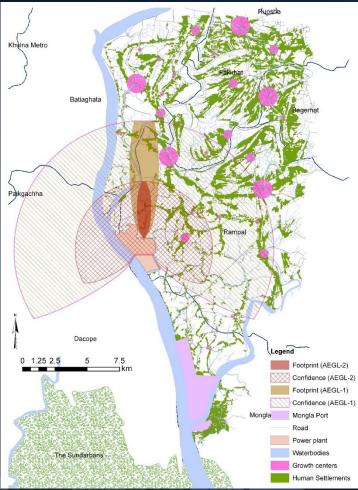
LiDAR Lightweight Airborne LiDAR to be used by UAV

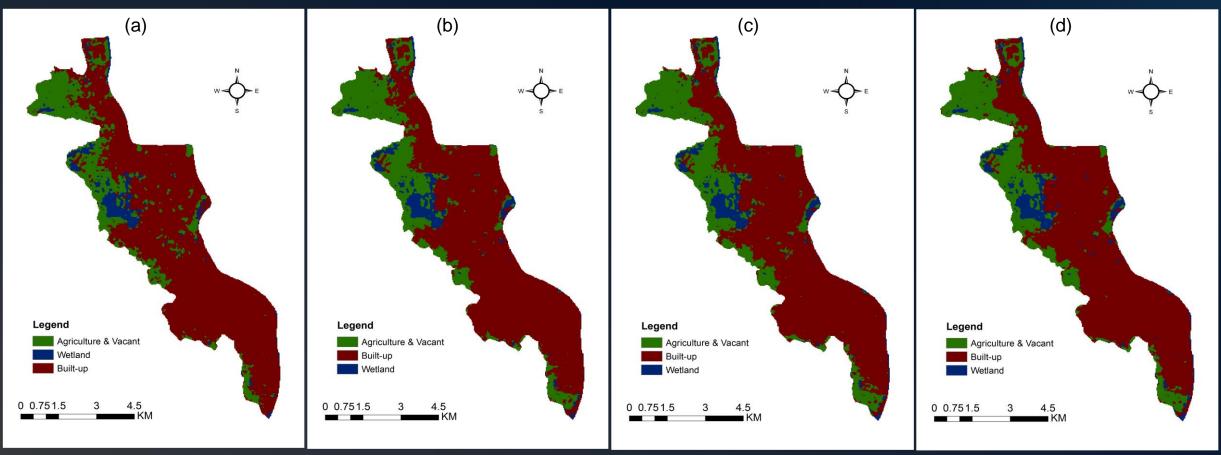
Milti-spectral and Hyper-spectral images Most of the surveyworks are carried out by non-survey grade UAS.

High-resolution RADAR Images Practically we do not see any application as such

National Spatial Data Infrastructure (NSDI) and WebGIS 2 initiatives (http://nsdi.gov.bd/ ; https://geodash.gov.bd/)


Way forward


Generally planners need data on demography and economy, Environment, land use and transportation, and infrastructure and services.



Evidence-based decision making

Some projects used hydrological modeling (e.g. Dhaka, Jessore-beanpole corridor) or geological data (e.g. Rajshahi) for land use planning-

a) Actual LULC map of year-2018 b) Projected LULC map of year-2018 by XGBoost model (PCs=30) c) Projected LULC map of year-2018 by LR-CA model d) Projected LULC map of year-2018 by ANN-CA model

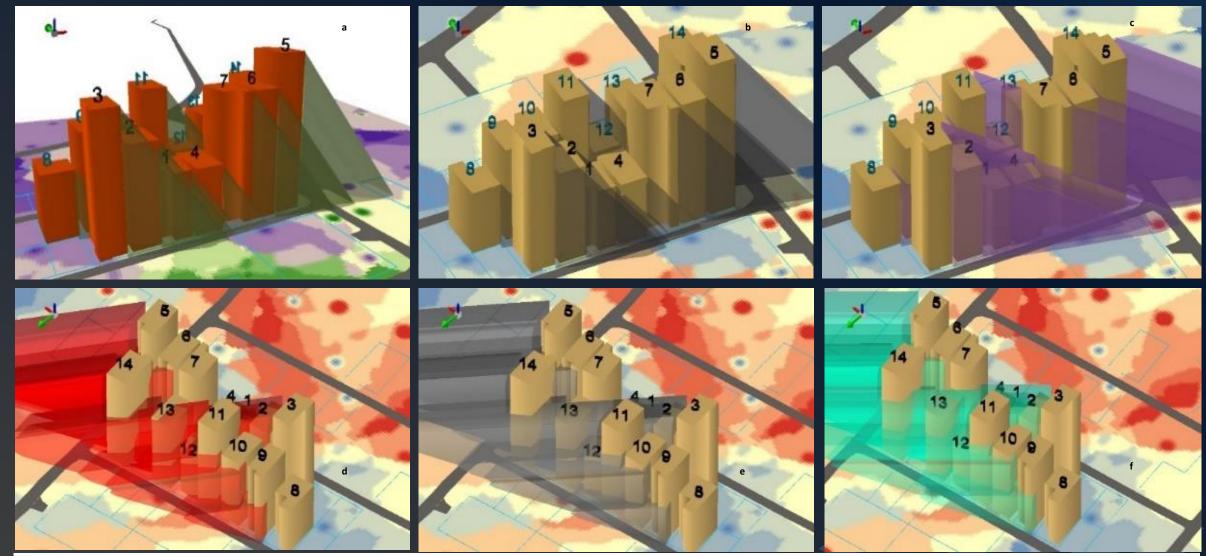
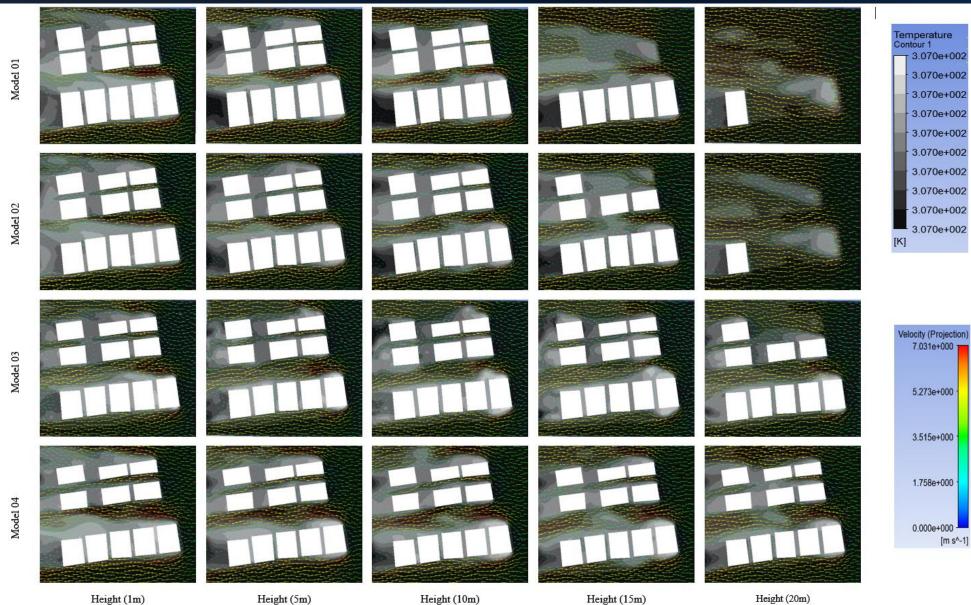



Figure 5: Increase in setback (15%) and shadow volume; summer (a-3.00pm, b-3.15pm, c-3.30pm) & winter (d-2.00pm, e-2.15pm, f-2.30pm)

Height (15m)

Height (20m)

Figure 16: Velocity Vector & Temperature Contour Profile

The Fourth International Workshop on GIS Technology and Application

THANK YOU

saiful@urp.ku.ac.bd